పుట:Ramanujan Nundi Etu Atu by Vemuri Venkateswararao.pdf/41

ఈ పుట అచ్చుదిద్దబడ్డది

వెంబడి, ధన పూర్ణ సంఖ్యలని అభివర్ణించటానికి ఇటువంటి వర్గు రూపం ఇదొక్కటేనా లేక ఇంకా ఉన్నాయా అని అనుమానం రానే వచ్చింది. రావటం అంటే వచ్చింది కాని ఈ సమస్యకి పరిష్కారం ఉందో లేదో ఒకటిన్నర శతాబ్దాల వరకూ ఎవ్వరికీ తెలియలేదు.

ఇంతలో, 1916 లో, శ్రీనివాస రామానుజన్ “ఇదొక్కటే కాదు. ఇటువంటి వర్గు రూపాలు మొత్తం 53 ఉన్నాయి” అని వాటి జాబితా రాసి ఇచ్చేసేడు! ఉదాహరణకి ప్రతి సంఖ్యని ఒక వర్గు, రెండింతల వర్గు, మూడింతల వర్గు, నాలుగింతల వర్గుల మొత్తం (1. x2 + 2. y2 + 3. z2 + 4. t2) గా రాయవచ్చన్నారు ఆయన. కుతూహలంతో కుతకుత లాడే ప్రాణులకి ఈ 53 రూపాలూ ఈ దిగువ పట్టికలో చూపెడతాను. ఈ పట్టికలో వాడిన గణిత వ్యక్తీకరణం (a.x2 + b.y2 + c.z2 + d.t2) అనుకుంటే ఇందులో a, b, c, d ల విలువలు ఎలా ఉంటాయో వరుసగా చూపించేను.

[1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [1, 1, 1, 5], [1, 1, 1, 6], [1, 1, 1, 7],

[1, 1, 2, 2], [1, 1, 2, 3], [1, 1, 2, 4], [1, 1, 2, 5], [1, 1, 2, 6], [1, 1, 2, 7], [1, 1, 2, 8], [1, 1, 2, 9], [1, 1, 2, 10], [1, 1, 2, 11], [1, 1, 2, 12], [1, 1, 2, 13], [1, 1, 2, 14],

[1, 1, 3, 3], [1, 1, 3, 4], [1, 1, 3, 5], [1, 1, 3, 6],

[1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2, 4], [1, 2, 2, 5], [1, 2, 2, 6], [1, 2, 2, 7],

[1, 2, 3, 3], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 3, 8], [1, 2, 3, 9], [1, 2, 3, 10],

[1, 2, 4, 4], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 4, 8], [1, 2, 4, 9],